Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,4-Dimethoxy-13b,13c-diphenyl-6H,13H-5,7,12,13b,13c,14-hexahydro-5a,6a,12a,13a-tetraazabenz[5,6]azuleno-[2,1,8-*ija*]benz[*f*]azulene-6,13-dione chloroform solvate

Yu-Zhou Wang,^a* Zhi-Guo Wang^b and Lin Li^a

^aKey Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ^bSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China Correspondence e-mail: yutian830@yahoo.com.cn

Received 30 October 2007; accepted 8 November 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.006 Å; R factor = 0.063; wR factor = 0.154; data-to-parameter ratio = 13.6.

The title compound, $C_{34}H_{30}N_4O_4$ ·CHCl₃, is an example of a diphenylglycoluril-derived molecular clip. It forms dimeric aggregates in the crystal structure through intermolecular C– $H \cdots O$ interactions. A tape-like supramolecular packing motif occurs in the crystal structure *via* intermolecular C– $H \cdots O$ contacts between adjacent dimers. The CHCl₃ solvent molecules occupy voids in the crystal structure.

Related literature

For related literature, see: Chen *et al.* (2007); Hof *et al.* (2002); Hu *et al.*, (2007); Sijbesma *et al.*, (1993). For analysis, see: Spek (2003). For synthesis, see: Wang *et al.* (2006).

Experimental

Crystal data $C_{34}H_{30}N_4O_4$ ·CHCl₃ $M_r = 677.99$

Triclinic, $P\overline{1}$ a = 11.0635 (17) Å

b = 12.5197 (19) Å	Z = 2
c = 14.174 (2) Å	Mo $K\alpha$ radiation
$\alpha = 64.652 \ (3)^{\circ}$	$\mu = 0.33 \text{ mm}^{-1}$
$\beta = 87.539 \ (3)^{\circ}$	T = 292 (2) K
$\gamma = 68.087 \ (3)^{\circ}$	$0.40 \times 0.30 \times 0.20 \text{ mm}$
$V = 1630.0 (4) \text{ Å}^3$	
Data collection	

Refinement $R[F^2 > 2\sigma(F^2)] = 0.063$ 417 parameters $wR(F^2) = 0.154$ H-atom parameters constrainedS = 0.96 $\Delta \rho_{max} = 0.34 \text{ e Å}^{-3}$ 5658 reflections $\Delta \rho_{min} = -0.37 \text{ e Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C29-H29\cdots O2^{i}\\ C4-H4\cdots O3^{ii}\end{array}$	0.93 0.93	2.52 2.55	3.399 (4) 3.396 (5)	158 151
		(···) 4		

Symmetry codes: (i) -x, -y + 2, -z; (ii) x - 1, y, z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL* (Bruker, 1997).

The authors are grateful to the Central China Normal University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2212).

References

- Bruker (1997). *SMART* (Version 5.054) and *SHELXTL* (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y. F., She, N. F., Meng, X. G., Yin, G. D., Wu, A. X. & Isaacs, L. (2007). Org. Lett. 9, 1899–1902.
- Hof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Jr (2002). *Angew. Chem. Int. Ed.* **41**, 1488–1508.
- Hu, S. L., She, N. F., Yin, G. D., Guo, H. Z., Wu, A. X. & Yang, C. L. (2007). *Tetrahedron Lett.* **48**, 1591–1594.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sijbesma, R. P., Kentgens, A. P. M., Lutz, E. T. G., van der Maas, J. H. & Nolte, R. J. M. (1993). J. Am. Chem. Soc. 115, 8999–9005.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wang, Z. G., Zhou, B. H., Chen, Y. F., Yin, G. D., Li, Y. T., Wu, A. X. & Isaacs, L. (2006). J. Org. Chem. 71, 4502–4508.

Acta Cryst. (2007). E63, o4711 [doi:10.1107/S1600536807057108]

1,4-Dimethoxy-13b,13c-diphenyl-6*H*,13*H*-5,7,12,13b,13c,14-hexahydro-5a,6a,12a,13a-tetraazabenz[5,6]azuleno[2,1,8-*ija*]benz[*f*]azulene-6,13-dione chloroform solvate

Y.-Z. Wang, Z.-G. Wang and L. Li

Comment

Molecular clips based on the glycoluril skeleton, which have a well defined geometry due to the rigidity of the fused rings, have been prepared for a wide variety of supramolecular applications, including molecular recognition (Hu *et al.*, 2007), molecular assemblies (Hof *et al.*, 2002), crystal engineering (Wang *et al.*, 2006; Chen *et al.*, 2007), *etc.*

The title compound (I), Fig. 1, based on the concave molecule diphenylglycoluril, which has two aromatic side-walls of the cleft and two urea carbonyl groups, possesses potential binding features to dihydroxy-substituted aromatic molecules by π - π stacking and hydrogen bonds (Sijbesma *et al.*, 1993). Compound (I) forms dimeric aggregates through intermolecular C29—H29···O2 interactions with centrosymmetrically related molecules (Fig. 2 & Table 1). A tape-like packing motif is formed *via* complementary intermolecular C4—H4···O3 hydrogen bonds between adjacent dimers (Fig. 3 & Table 1). The solvent CHCl₃ molecules occupy voids in the crystal structure.

Experimental

Compound (I) was synthesized according to literature procedure (Wang *et al.*, 2006) in 42% isolated yield. Crystals appropriate for data collection were obtained by slow evaporation of CH₃OH:MeOH=20:1 (v/v) solution held at room temperature.

Refinement

All H-atoms were included in the riding model approximation with with N—H = 0.86Å and C—H = 0.93 - 98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C, N)$ and $U_{iso}(methyl-H) = 1.5U_{eq}(methyl-C)$.

Figures

Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 20° probability level. All hydrogen atoms and solvent CHCl₃ molecules are omitted for clarity.

Fig. 2. Dimeric aggregates in (I) mediated by C—H…O interactions, shown as dashed bonds. Solvent CHCl₃ molecules and most hydrogen atoms are omitted for clarity.

Fig. 3. Crystal packing in (I). The C—H…O interactions are shown as dashed bonds. Hydrogen atoms are omitted for clarity.

1,4-Dimethoxy-13*b*,l3c-diphenyl-6H,13*H*-5,7,12,13*b*,13*c*,14-Hexahydro- 5a,6a,l2a,13*a*-tetraazabenz[5,6]azuleno[2,1,8-ija]benz[*f*]azulene-6,13-dione chloroform solvate

Crystal data

$C_{34}H_{30}N_4O_4{\cdot}CHCl_3$	Z = 2
$M_r = 677.99$	$F_{000} = 704$
Triclinic, PT	$D_{\rm x} = 1.381 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 11.0635 (17) Å	Cell parameters from 1381 reflections
b = 12.5197 (19) Å	$\theta = 2.1 - 24.8^{\circ}$
c = 14.174 (2) Å	$\mu = 0.33 \text{ mm}^{-1}$
$\alpha = 64.652 \ (3)^{\circ}$	T = 292 (2) K
$\beta = 87.539 \ (3)^{\circ}$	Block, colorless
$\gamma = 68.087 \ (3)^{\circ}$	$0.40\times0.30\times0.20\ mm$
$V = 1630.0 (4) \text{ Å}^3$	

Data collection

Bruker SMART 4K CCD area detector diffractometer	3004 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.058$
Monochromator: graphite	$\theta_{\text{max}} = 25.0^{\circ}$
T = 292(2) K	$\theta_{\min} = 1.9^{\circ}$
ϕ and ω scans	$h = -13 \rightarrow 11$
Absorption correction: none	$k = -14 \rightarrow 14$
8674 measured reflections	$l = -14 \rightarrow 16$
5658 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.063$	H-atom parameters constrained
$wR(F^2) = 0.154$?
S = 0.96	$(\Delta/\sigma)_{\rm max} = <0.001$
5658 reflections	$\Delta \rho_{max} = 0.34 \text{ e } \text{\AA}^{-3}$
417 parameters	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.1406 (3)	0.6430 (3)	0.2839 (3)	0.0540 (10)
C2	-0.2244 (4)	0.7493 (4)	0.2984 (3)	0.0687 (12)
H2	-0.1961	0.7707	0.3462	0.082*
C3	-0.3486 (4)	0.8218 (4)	0.2420 (4)	0.0821 (14)
Н3	-0.4044	0.8915	0.2523	0.098*
C4	-0.3906 (4)	0.7918 (4)	0.1707 (4)	0.0844 (14)
H4	-0.4749	0.8409	0.1331	0.101*
C5	-0.3085 (4)	0.6895 (4)	0.1545 (3)	0.0713 (12)
Н5	-0.3374	0.6709	0.1049	0.086*
C6	-0.1831 (4)	0.6132 (3)	0.2109 (3)	0.0544 (10)
C7	-0.0980 (3)	0.4973 (3)	0.1953 (3)	0.0565 (10)
H7A	-0.0833	0.4206	0.2606	0.068*
H7B	-0.1456	0.4928	0.1420	0.068*
C8	-0.0070 (4)	0.5620 (3)	0.3503 (3)	0.0555 (10)
H8A	0.0039	0.5998	0.3948	0.067*
H8B	-0.0042	0.4770	0.3961	0.067*
C9	0.0355 (3)	0.5824 (3)	0.0637 (3)	0.0420 (8)
C10	0.1732 (3)	0.6231 (3)	0.2662 (3)	0.0452 (9)
C11	0.1362 (3)	0.4639 (3)	0.2390 (2)	0.0406 (8)
C12	0.1906 (3)	0.3242 (3)	0.3196 (3)	0.0436 (9)
C13	0.1770 (4)	0.2316 (3)	0.2978 (3)	0.0598 (11)
H13	0.1294	0.2554	0.2345	0.072*
C14	0.2344 (4)	0.1027 (4)	0.3703 (4)	0.0774 (13)
H14	0.2245	0.0404	0.3559	0.093*
C15	0.3064 (5)	0.0674 (4)	0.4640 (4)	0.0823 (14)
H15	0.3451	-0.0189	0.5123	0.099*
C16	0.3207 (4)	0.1582 (4)	0.4856 (3)	0.0733 (13)
H16	0.3696	0.1342	0.5483	0.088*
C17	0.2622 (4)	0.2863 (4)	0.4142 (3)	0.0594 (11)
H17	0.2711	0.3482	0.4298	0.071*
C18	0.2372 (3)	0.5091 (3)	0.1657 (2)	0.0401 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C19	0.3615 (3)	0.4004 (3)	0.1684 (2)	0.0411 (8)
C20	0.3570 (3)	0.3353 (3)	0.1123 (3)	0.0519 (10)
H20	0.2804	0.3632	0.0685	0.062*
C21	0.4653 (4)	0.2286 (3)	0.1202 (3)	0.0627 (11)
H21	0.4615	0.1854	0.0817	0.075*
C22	0.5776 (4)	0.1873 (4)	0.1850 (3)	0.0664 (12)
H22	0.6502	0.1155	0.1907	0.080*
C23	0.5843 (4)	0.2507 (4)	0.2414 (3)	0.0684 (12)
H23	0.6612	0.2225	0.2850	0.082*
C24	0.4759 (3)	0.3570 (3)	0.2333 (3)	0.0570 (10)
H24	0.4802	0.3997	0.2722	0.068*
C25	0.2006 (3)	0.6642 (3)	-0.0291 (3)	0.0489 (9)
H25A	0.1522	0.6795	-0.0922	0.059*
H25B	0.2931	0.6181	-0.0294	0.059*
C26	0.3252 (3)	0.6787 (3)	0.1428 (3)	0.0521 (10)
H26A	0.4006	0.6331	0.1177	0.063*
H26B	0 3578	0 7036	0 1893	0.063*
C27	0.1817 (3)	0 7925 (3)	-0.0334(3)	0.0484(9)
C28	0.1017(3) 0.1085(3)	0.9925(3)	-0.1229(3)	0.0502(9)
C29	0.0892(4)	1.0230(3)	-0.1223(3)	0.0502(9)
H29	0.0395	1 0979	-0.1871	0.071*
C30	0.0373 0.1428 (4)	1 0303 (3)	-0.0468(3)	0.0611 (11)
H30	0.1286	1 1105	-0.0512	0.073*
C31	0.1230	0.9207 (3)	0.0415 (3)	0.075
C31	0.2175(3)	0.3207(3)	0.0413(3)	0.0313(10) 0.0473(0)
C32	0.2571(5)	1.0407(4)	0.0491(3) 0.1100(4)	0.0475(0)
	0.2390 (4)	1.0407 (4)	0.1199 (4)	0.10013 (14)
ПЭЭА 1122D	0.2920	1.0804	0.0384	0.122*
ПЭЭД	0.3003	1.0272	0.1010	0.122*
П33C	0.10/2	1.0900	0.1138	0.122
U34	0.0162 (5)	0.9993 (4)	-0.3025 (3)	0.0882 (15)
H34A	-0.0609	1.0639	-0.2970	0.132*
H34B	-0.0053	0.9755	-0.3536	0.132*
H34C	0.0832	1.0327	-0.3243	0.132*
C35	0.2834 (5)	0.6/79 (4)	0.4960 (3)	0.0879 (15)
H35	0.2463	0.6870	0.4302	0.105*
CII	0.3533 (2)	0.51797 (14)	0.58193 (17)	0.1871 (10)
Cl2	0.40018 (18)	0.74442 (14)	0.46850 (15)	0.1407 (7)
C13	0.15721 (19)	0.75913 (16)	0.54826 (12)	0.1523 (7)
N1	0.0289 (3)	0.4966 (2)	0.1636 (2)	0.0416 (7)
N2	0.1022 (3)	0.5492 (2)	0.2900 (2)	0.0452 (7)
N3	0.1577 (3)	0.5838 (2)	0.0626 (2)	0.0405 (7)
N4	0.2639 (3)	0.5902 (2)	0.2043 (2)	0.0434 (7)
01	-0.0526 (2)	0.6432 (2)	-0.01028 (18)	0.0539 (7)
02	0.1596 (2)	0.7038 (2)	0.29762 (19)	0.0608 (7)
O3	0.2754 (3)	0.9211 (2)	0.1251 (2)	0.0706 (8)
O4	0.0629 (3)	0.8893 (2)	-0.2027 (2)	0.0675 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.048 (2)	0.054 (2)	0.057 (2)	-0.0174 (19)	0.0174 (19)	-0.025 (2)
C2	0.068 (3)	0.067 (3)	0.080 (3)	-0.025 (2)	0.031 (2)	-0.043 (2)
C3	0.063 (3)	0.065 (3)	0.105 (4)	-0.007 (2)	0.024 (3)	-0.042 (3)
C4	0.050 (3)	0.078 (3)	0.100 (4)	-0.006 (2)	0.014 (3)	-0.034 (3)
C5	0.049 (3)	0.081 (3)	0.078 (3)	-0.018 (2)	0.009 (2)	-0.036 (3)
C6	0.049 (2)	0.056 (2)	0.057 (2)	-0.0184 (19)	0.0111 (19)	-0.026 (2)
C7	0.049 (2)	0.059 (2)	0.062 (3)	-0.0190 (19)	0.0070 (19)	-0.028 (2)
C8	0.068 (3)	0.057 (2)	0.048 (2)	-0.022 (2)	0.014 (2)	-0.031 (2)
С9	0.044 (2)	0.038 (2)	0.046 (2)	-0.0108 (17)	0.0027 (18)	-0.0245 (19)
C10	0.047 (2)	0.040 (2)	0.042 (2)	-0.0078 (17)	-0.0065 (17)	-0.0199 (18)
C11	0.042 (2)	0.0355 (19)	0.040 (2)	-0.0080 (15)	0.0004 (16)	-0.0190 (17)
C12	0.048 (2)	0.039 (2)	0.043 (2)	-0.0152 (16)	0.0091 (17)	-0.0195 (18)
C13	0.068 (3)	0.045 (2)	0.062 (3)	-0.018 (2)	0.001 (2)	-0.023 (2)
C14	0.102 (4)	0.047 (3)	0.084 (3)	-0.028 (2)	0.012 (3)	-0.030 (3)
C15	0.098 (4)	0.047 (3)	0.066 (3)	-0.011 (2)	0.008 (3)	-0.008 (2)
C16	0.082 (3)	0.057 (3)	0.052 (3)	-0.007 (2)	0.000 (2)	-0.016 (2)
C17	0.068 (3)	0.050 (2)	0.053 (3)	-0.015 (2)	0.002 (2)	-0.023 (2)
C18	0.042 (2)	0.0372 (19)	0.041 (2)	-0.0112 (16)	0.0001 (16)	-0.0197 (17)
C19	0.041 (2)	0.0365 (19)	0.040 (2)	-0.0117 (16)	0.0062 (16)	-0.0145 (17)
C20	0.046 (2)	0.048 (2)	0.061 (2)	-0.0104 (18)	0.0046 (18)	-0.031 (2)
C21	0.061 (3)	0.054 (2)	0.075 (3)	-0.015 (2)	0.014 (2)	-0.038 (2)
C22	0.052 (3)	0.050 (2)	0.083 (3)	-0.009 (2)	0.020 (2)	-0.027 (2)
C23	0.045 (2)	0.060 (3)	0.079 (3)	-0.004 (2)	-0.004 (2)	-0.026 (2)
C24	0.055 (2)	0.050 (2)	0.060 (3)	-0.013 (2)	-0.001 (2)	-0.024 (2)
C25	0.053 (2)	0.042 (2)	0.041 (2)	-0.0122 (17)	0.0035 (17)	-0.0150 (18)
C26	0.049 (2)	0.044 (2)	0.064 (3)	-0.0183 (18)	0.0001 (19)	-0.024 (2)
C27	0.040 (2)	0.036 (2)	0.059 (2)	-0.0094 (16)	0.0103 (18)	-0.0176 (19)
C28	0.047 (2)	0.043 (2)	0.050 (2)	-0.0130 (18)	0.0029 (18)	-0.016 (2)
C29	0.053 (2)	0.038 (2)	0.066 (3)	-0.0108 (18)	0.008 (2)	-0.011 (2)
C30	0.050 (2)	0.037 (2)	0.087 (3)	-0.0137 (19)	0.009 (2)	-0.023 (2)
C31	0.042 (2)	0.040 (2)	0.073 (3)	-0.0161 (18)	0.0055 (19)	-0.025 (2)
C32	0.040 (2)	0.037 (2)	0.061 (3)	-0.0127 (16)	0.0070 (18)	-0.0203 (19)
C33	0.088 (3)	0.061 (3)	0.116 (4)	-0.032 (2)	0.012 (3)	-0.054 (3)
C34	0.101 (4)	0.070 (3)	0.058 (3)	-0.019 (3)	-0.019 (2)	-0.006 (3)
C35	0.125 (4)	0.081 (3)	0.070 (3)	-0.053 (3)	0.001 (3)	-0.033 (3)
Cl1	0.246 (2)	0.0731 (11)	0.1969 (19)	-0.0633 (12)	0.0846 (17)	-0.0248 (12)
Cl2	0.1482 (15)	0.0909 (10)	0.1857 (17)	-0.0635 (10)	0.0059 (12)	-0.0484 (11)
C13	0.1754 (17)	0.1303 (13)	0.0933 (11)	-0.0199 (12)	0.0216 (11)	-0.0338 (10)
N1	0.0408 (17)	0.0408 (17)	0.0416 (18)	-0.0125 (13)	0.0013 (13)	-0.0194 (15)
N2	0.0488 (18)	0.0443 (18)	0.0478 (18)	-0.0146 (14)	0.0071 (14)	-0.0284 (15)
N3	0.0421 (17)	0.0361 (16)	0.0374 (17)	-0.0116 (13)	-0.0025 (13)	-0.0136 (14)
N4	0.0451 (17)	0.0398 (17)	0.0474 (18)	-0.0141 (14)	-0.0007 (14)	-0.0227 (15)
O1	0.0511 (15)	0.0494 (15)	0.0527 (16)	-0.0088 (12)	-0.0118 (13)	-0.0228 (13)
O2	0.0724 (18)	0.0496 (15)	0.0684 (18)	-0.0155 (13)	-0.0013 (13)	-0.0393 (14)

O3	0.0702 (19)	0.0482 (16)	0.098 (2)	-0.0208 (13)	-0.0085 (16)	-0.0365 (16)
O4	0.0759 (19)	0.0501 (16)	0.0529 (17)	-0.0155 (14)	-0.0068 (14)	-0.0088 (14)
Geometric param	neters (Å, °)					
C1—C6		1.391 (5)	C19—	-C20	1.37	5 (4)
C1—C2		1.403 (5)	C19—	-C24	1.37	9 (4)
C1—C8		1.510 (5)	C20—	-C21	1.38	5 (4)
C2—C3		1.376 (6)	C20—	-H20	0.93	00
С2—Н2		0.9300	C21—	-C22	1.36	7 (5)
C3—C4		1.368 (6)	C21—	-H21	0.93	00
С3—Н3		0.9300	C22—	-C23	1.36	5 (5)
C4—C5		1.373 (5)	C22—	-H22	0.93	00
C4—H4		0.9300	C23—	-C24	1.38	3 (5)
С5—С6		1.389 (5)	C23—	-H23	0.93	00
С5—Н5		0.9300	C24—	-H24	0.93	00
С6—С7		1.510 (5)	C25—	-N3	1.454	4 (4)
C7—N1		1.454 (4)	C25—	-C27	1.514	4 (4)
С7—Н7А		0.9700	C25—	-H25A	0.97	00
С7—Н7В		0.9700	C25—	-H25B	0.97	00
C8—N2		1.450 (4)	C26—	-N4	1.45	9 (4)
C8—H8A		0.9700	C26—	-C32	1.514	4 (4)
C8—H8B		0.9700	C26—	-H26A	0.97	00
С9—О1		1.217 (4)	C26—	-H26B	0.97	00
C9—N3		1.358 (4)	C27—	-C32	1.394	4 (5)
C9—N1		1.382 (4)	C27—	-C28	1.40	0 (4)
C10—O2		1.229 (4)	C28—	-C29	1.37	5 (5)
C10—N2		1.356 (4)	C28—	-04	1.37	7 (4)
C10—N4		1.368 (4)	C29—	-C30	1.37	0 (5)
C11—N1		1.445 (4)	C29—	-H29	0.93	00
C11—N2		1.464 (4)	C30—	-C31	1.38	0 (5)
C11—C12		1.514 (4)	C30—	-H30	0.93	00
C11—C18		1.587 (4)	C31—	-O3	1.374	4 (4)
C12—C13		1.380 (4)	C31—	-C32	1.40	5 (4)
C12—C17		1.384 (4)	C33—	-O3	1.40	8 (4)
C13—C14		1.391 (5)	C33—	-H33A	0.96	00
С13—Н13		0.9300	C33—	-H33B	0.96	00
C14—C15		1.385 (6)	C33—	-H33C	0.96	00
C14—H14		0.9300	C34—	-04	1.42:	5 (4)
C15—C16		1.360 (6)	C34—	-H34A	0.96	00
C15—H15		0.9300	C34—	-H34B	0.96	00
C16—C17		1.381 (5)	C34—	-H34C	0.96	00
C16—H16		0.9300	C35—	-Cl1	1.71	l (4)
C17—H17		0.9300	C35—	-Cl2	1.73	1 (5)
C18—N3		1.452 (4)	C35—	-C13	1.74	0 (5)
C18—N4		1.460 (4)	C35—	-H35	0.98	00
C18—C19		1.519 (4)				
C6—C1—C2		119.6 (4)	C22—	-C21—H21	120.2	2
C6—C1—C8		121.7 (3)	C20—	-C21—H21	120.2	2

C2—C1—C8	118.8 (3)	C23—C22—C21	120.6 (3)
C3—C2—C1	120.0 (4)	С23—С22—Н22	119.7
C3—C2—H2	120.0	C21—C22—H22	119.7
C1—C2—H2	120.0	C22—C23—C24	119.6 (4)
C4—C3—C2	120.4 (4)	С22—С23—Н23	120.2
С4—С3—Н3	119.8	C24—C23—H23	120.2
С2—С3—Н3	119.8	C19—C24—C23	120.8 (3)
C3—C4—C5	120.1 (4)	C19—C24—H24	119.6
C3—C4—H4	119.9	C23—C24—H24	119.6
С5—С4—Н4	119.9	N3—C25—C27	113.9 (3)
C4—C5—C6	121.1 (4)	N3—C25—H25A	108.8
С4—С5—Н5	119.4	C27—C25—H25A	108.8
С6—С5—Н5	119.4	N3—C25—H25B	108.8
C5—C6—C1	118.8 (3)	С27—С25—Н25В	108.8
C5—C6—C7	119.7 (3)	H25A—C25—H25B	107.7
C1—C6—C7	121.4 (3)	N4—C26—C32	115.6 (3)
N1—C7—C6	114.7 (3)	N4—C26—H26A	108.4
N1—C7—H7A	108.6	C32—C26—H26A	108.4
С6—С7—Н7А	108.6	N4—C26—H26B	108.4
N1—C7—H7B	108.6	C32—C26—H26B	108.4
С6—С7—Н7В	108.6	H26A—C26—H26B	107.4
H7A—C7—H7B	107.6	C32—C27—C28	119.9 (3)
N2—C8—C1	114.3 (3)	C32—C27—C25	121.2 (3)
N2—C8—H8A	108.7	C28—C27—C25	119.0 (3)
C1—C8—H8A	108.7	C29—C28—O4	124.1 (3)
N2—C8—H8B	108.7	C29—C28—C27	119.9 (4)
C1—C8—H8B	108.7	O4—C28—C27	115.9 (3)
H8A—C8—H8B	107.6	C30—C29—C28	120.4 (4)
O1—C9—N3	126.6 (3)	С30—С29—Н29	119.8
O1—C9—N1	125.4 (3)	С28—С29—Н29	119.8
N3—C9—N1	108.0 (3)	C29—C30—C31	121.1 (3)
O2—C10—N2	125.1 (3)	С29—С30—Н30	119.5
O2-C10-N4	126.0 (4)	С31—С30—Н30	119.5
N2-C10-N4	108.8 (3)	O3—C31—C30	124.1 (3)
N1—C11—N2	112.3 (2)	O3—C31—C32	116.4 (3)
N1—C11—C12	113.4 (3)	C30—C31—C32	119.5 (4)
N2-C11-C12	111.2 (3)	C27—C32—C31	119.2 (3)
N1—C11—C18	102.7 (3)	C27—C32—C26	120.8 (3)
N2-C11-C18	101.2 (3)	C31—C32—C26	119.9 (3)
C12—C11—C18	115.2 (2)	O3—C33—H33A	109.5
C13—C12—C17	118.9 (3)	O3—C33—H33B	109.5
C13—C12—C11	120.8 (3)	H33A—C33—H33B	109.5
C17—C12—C11	120.1 (3)	O3—C33—H33C	109.5
C12—C13—C14	120.0 (4)	H33A—C33—H33C	109.5
C12—C13—H13	120.0	H33B—C33—H33C	109.5
C14—C13—H13	120.0	O4—C34—H34A	109.5
C15—C14—C13	119.9 (4)	O4—C34—H34B	109.5
C15—C14—H14	120.0	H34A—C34—H34B	109.5
C13—C14—H14	120.0	O4—C34—H34C	109.5

C16-C15-C14	120.2 (4)	H34A—C34—H34C	109.5
C16—C15—H15	119.9	H34B—C34—H34C	109.5
C14—C15—H15	119.9	Cl1—C35—Cl2	110.7 (3)
C15-C16-C17	119.8 (4)	Cl1—C35—Cl3	110.3 (3)
C15-C16-H16	120.1	Cl2—C35—Cl3	110.0 (2)
С17—С16—Н16	120.1	Cl1—C35—H35	108.6
C16—C17—C12	121.1 (4)	Cl2—C35—H35	108.6
С16—С17—Н17	119.4	Cl3—C35—H35	108.6
С12—С17—Н17	119.4	C9—N1—C11	111.5 (3)
N3-C18-N4	112.0 (2)	C9—N1—C7	119.9 (3)
N3—C18—C19	112.2 (2)	C11—N1—C7	121.2 (3)
N4—C18—C19	112.6 (3)	C10—N2—C8	124.0 (3)
N3—C18—C11	101.7 (2)	C10—N2—C11	113.5 (3)
N4—C18—C11	102.8 (2)	C8—N2—C11	122.1 (3)
C19—C18—C11	114.7 (3)	C9—N3—C18	113.5 (3)
C20—C19—C24	118.6 (3)	C9—N3—C25	123.8 (3)
C20-C19-C18	119.2 (3)	C18—N3—C25	122.3 (3)
C24—C19—C18	121.9 (3)	C10—N4—C26	119.2 (3)
C19—C20—C21	120.8 (3)	C10—N4—C18	111.5 (3)
С19—С20—Н20	119.6	C26—N4—C18	121.5 (3)
C21—C20—H20	119.6	C31—O3—C33	118.0 (3)
C22—C21—C20	119.6 (3)	C28—O4—C34	116.5 (3)
C6—C1—C2—C3	1.1 (6)	C28—C27—C32—C31	0.6 (5)
C8—C1—C2—C3	-177.5 (4)	C25—C27—C32—C31	179.7 (3)
C1—C2—C3—C4	-0.7 (7)	C28—C27—C32—C26	-175.3 (3)
C2—C3—C4—C5	-0.4 (7)	C25—C27—C32—C26	3.8 (5)
C3—C4—C5—C6	1.2 (7)	O3—C31—C32—C27	-179.6 (3)
C4—C5—C6—C1	-0.8 (6)	C30—C31—C32—C27	0.6 (5)
C4—C5—C6—C7	176.8 (4)	O3—C31—C32—C26	-3.7 (5)
C2—C1—C6—C5	-0.4 (6)	C30—C31—C32—C26	176.5 (3)
C8—C1—C6—C5	178.2 (4)	N4—C26—C32—C27	-61.4 (4)
C2—C1—C6—C7	-177.9 (3)	N4—C26—C32—C31	122.8 (3)
C8—C1—C6—C7	0.6 (6)	01—C9—N1—C11	-166.3 (3)
C5—C6—C7—N1	123.4 (4)	N3—C9—N1—C11	15.2 (3)
C1—C6—C7—N1	-59.1 (5)	01—C9—N1—C7	-16.0(5)
C6—C1—C8—N2	57.4 (5)	N3—C9—N1—C7	165.5 (3)
C2-C1-C8-N2	-124.0(4)	N2-C11-N1-C9	91.2 (3)
N1-C11-C12-C13	24.4 (4)	C12—C11—N1—C9	-141.7(3)
N_{2} C11 - C12 - C13	152.1 (3)	C18 - C11 - N1 - C9	-167(3)
$C_{18} - C_{11} - C_{12} - C_{13}$	-935(4)	N2-C11-N1-C7	-58.7(4)
N1-C11-C12-C17	-1597(3)	C12-C11-N1-C7	68 4 (3)
N_{2} C11 C12 C17	-32.1(4)	C18 - C11 - N1 - C7	-166.6(3)
$C_{18} - C_{11} - C_{12} - C_{17}$	82 3 (4)	C6-C7-N1-C9	-70.3(4)
C_{17} C_{12} C_{13} C_{14}	0.2(5)	C6-C7-N1-C11	77 1 (4)
C11-C12-C13-C14	176 1 (3)	02-C10-N2-C8	48(5)
C12 - C13 - C14 - C15	-0.7(6)	N4-C10-N2-C8	-1769(3)
C13 - C14 - C15 - C16	0.7(0)	Ω^2 C10 N2 C11	178 1 (3)
C_{14} C_{15} C_{16} C_{17}	0.5 (7)	$N_{-C10} N_{2-C11}$	-36(3)
C_{15} C_{16} C_{17} C_{12}	-10(6)	C1 - C8 - N2 - C10	96 5 (<i>J</i>)
C13 - C10 - C17 - C12	1.0 (0)	$C_1 - C_0 - N_2 - C_1 U$	JU.J (+)

C13—C12—C17—C16	0.6 (6)	C1—C8—N2—C11	-76.3 (4)
C11—C12—C17—C16	-175.3 (3)	N1-C11-N2-C10	-114.4 (3)
N1-C11-C18-N3	11.7 (3)	C12-C11-N2-C10	117.4 (3)
N2-C11-C18-N3	-104.4 (2)	C18—C11—N2—C10	-5.5 (3)
C12-C11-C18-N3	135.5 (3)	N1—C11—N2—C8	59.1 (4)
N1-C11-C18-N4	127.8 (2)	C12—C11—N2—C8	-69.1 (4)
N2-C11-C18-N4	11.7 (3)	C18—C11—N2—C8	168.0 (3)
C12—C11—C18—N4	-108.4 (3)	O1—C9—N3—C18	175.1 (3)
N1-C11-C18-C19	-109.6 (3)	N1—C9—N3—C18	-6.5 (3)
N2-C11-C18-C19	134.3 (3)	O1—C9—N3—C25	2.4 (5)
C12—C11—C18—C19	14.2 (4)	N1—C9—N3—C25	-179.2 (2)
N3-C18-C19-C20	-37.1 (4)	N4—C18—N3—C9	-112.9 (3)
N4-C18-C19-C20	-164.6 (3)	C19—C18—N3—C9	119.3 (3)
C11—C18—C19—C20	78.3 (4)	C11—C18—N3—C9	-3.7 (3)
N3-C18-C19-C24	149.1 (3)	N4—C18—N3—C25	60.0 (4)
N4-C18-C19-C24	21.7 (5)	C19—C18—N3—C25	-67.8 (4)
C11—C18—C19—C24	-95.4 (4)	C11—C18—N3—C25	169.1 (2)
C24—C19—C20—C21	-0.4 (5)	C27—C25—N3—C9	92.8 (4)
C18—C19—C20—C21	-174.3 (3)	C27—C25—N3—C18	-79.3 (4)
C19—C20—C21—C22	0.3 (6)	O2-C10-N4-C26	-19.7 (5)
C20—C21—C22—C23	-0.3 (6)	N2-C10-N4-C26	162.0 (3)
C21—C22—C23—C24	0.4 (6)	O2-C10-N4-C18	-169.4 (3)
C20—C19—C24—C23	0.5 (6)	N2-C10-N4-C18	12.3 (3)
C18—C19—C24—C23	174.2 (3)	C32—C26—N4—C10	-71.8 (4)
C22—C23—C24—C19	-0.5 (6)	C32—C26—N4—C18	74.8 (4)
N3—C25—C27—C32	56.4 (4)	N3-C18-N4-C10	93.4 (3)
N3—C25—C27—C28	-124.5 (3)	C19-C18-N4-C10	-139.0 (3)
C32—C27—C28—C29	-1.4 (5)	C11-C18-N4-C10	-15.0 (3)
C25—C27—C28—C29	179.5 (3)	N3-C18-N4-C26	-55.5 (4)
C32—C27—C28—O4	176.9 (3)	C19—C18—N4—C26	72.1 (4)
C25—C27—C28—O4	-2.2 (5)	C11—C18—N4—C26	-164.0 (3)
O4—C28—C29—C30	-177.2 (3)	C30—C31—O3—C33	-0.9 (5)
C27—C28—C29—C30	0.9 (5)	C32—C31—O3—C33	179.4 (3)
C28—C29—C30—C31	0.3 (6)	C29—C28—O4—C34	12.6 (5)
C29—C30—C31—O3	179.1 (3)	C27—C28—O4—C34	-165.6 (3)
C29—C30—C31—C32	-1.1 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!$
C29—H29···O2 ⁱ	0.93	2.52	3.399 (4)	158
C4—H4···O3 ⁱⁱ	0.93	2.55	3.396 (5)	151
Symmetry codes: (i) $-x$, $-y+2$, $-z$; (ii) $x-1$, y , z .				

Fig. 3

